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Abstract 
Independent Component Analysis of resting-state FMRI studies allows to extract a number of neural networks form task-less 
studies. There is a paucity of reports on normal networks and their variants found in normal children. We describe in this study 
the characterization of neural networks found in a group of normal children. 
Methods: 40 datasets of normal children who underwent rs-fMRI were analyzed with ICA utilizing MELODICA from FSL 
library. For each subject, the independent components were classified between neural networks and non-neural networks based 
on a heuristic approach and performed by an expert on the field. Further characterization of the neural networks was 
accomplished based on localization of maxima, frequency of oscillation, and profile of oscillation. Frequency of network yield 
across subjects was assessed along frequency of the network oscillation and main variants. 
Results: 24 distinct neural networks were found. Oscillation frequency ranged from 0.0168 to 0.072 Hz. Main pattern variants 
consist of network-merging and iterations of the same network at different frequencies. The most frequently found networks 
across the subjects were the right executive network (97.5%), the precuneus (82%) and visual (77.5%). The networks less 
frequently found were the hippocampus (7.5%) and the amygdala (10%). 
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Introduction 
Functional MRI (FMRI) can be divided in two types: task-
based and task-less FMRI. Task-based FMRI requires the 
subject to perform a task. This task may be “active,” in 
which the subject is required to produce an overt motor or 
verbal response; or “passive,” in which the subject receives 
a sensory stimulation of any type (visual, auditory, 
somatosensory, proprioception, pain, etc). The task-less 
FMRI does not require any task. This type of FMRI is 
known as “Resting-state Functional Magnetic Resonance 
“or simply rs-FMRI. The technique is gaining momentum in 
clinical research and even medical practice.  
The standard FMRI is based on the Blood Oxygen Level 
Dependent (BOLD) effect [1]. Briefly, the BOLD effect is 
produced when the ratio between de-oxyhemoglobin and 
hemoglobin are locally changed in the brain cortex 
specifically activated by a task. The local magnetic 
properties result altered by the levels of de-xyhemoglobin, a 
bio-molecule with magnetic properties. The level of this 
molecule is a function of the delivery/consumption ratio of 
the O2 exerted by the firing neurons. Regional magnetic 
changes, therefore, make possible to map the brain’s 
response to a stimulus.  
The rs-FMRI is based in the same BOLD effect but, in this 
case, the neural firing variations are not due to extrinsic 
factors (stimuli). Instead, the rs-FMRI is based on the 
presence of normal oscillations of brain activity, known as 
“spontaneous low-frequency oscillations.” These 
oscillations are pseudo-periodic variations of the neural 
activity that form like tides, involving different brain areas 
in synchrony.  
RS-FMRI sequences may be analyzed in multiples ways. 
The local and remote synchrony of neural spontaneous 
activations may be utilized to reveal connectivity of a 
specific chosen area or region of interest (ROI). The ROI is 

selected because it has been previously established as a hub 
of an important cognitive, behavioral or sensory/motor 
function circuitry. The ROI becomes a “seed” and its mean 
profile of oscillation is used as a regressor for the rest of the 
brain. Areas with similar pattern of oscillations are accepted 
as connected to the seed ROI. This type of analysis is 
termed the ROI-based functional connectivity MRI. A 
further sophistication in the analysis allows to depict the 
connectivity between hubs via graphs utilizing the Graph-
Theory technique. A third approach in the rs-FMRI data 
analysis is to analyze all the possible correlated signals 
within the data by clusterization of the entire space. The 
procedure is termed “Independent Component Analysis 
(ICA)”. It has the advantage of not to rely in any a-priory 
hypothesis. The ICA provides a number of possible signal 
correlations including all types of motion, noise and the 
spontaneous low-frequency brain oscillations. 
Several different oscillations occur in the brain grouping 
functional regions in networks. All these oscillations have 
the particularity to oscillate at very low frequencies - 
between 0.01 and 0.08 Hz. The spontaneous low-frequency 
oscillations involve mostly the gray matter and have striking 
characteristics. They are preserved during sleep and light 
sedation; they have been found in small vertebrates (rats); 
and some networks diminish their activity when the subject 
is involved in cognitive-loaded tasks. These networks 
involve the posterior cingulate gyrus, the mesial frontal 
areas and lateral parietal and prefrontal areas. The system is 
also known with the name: the default mode. Notice that the 
default mode is only a part of the many brain’s spontaneous 
oscillating networks. There are excellent detailed reviews in 
rs-FMRI networks if the reader wants to deepen into the 
topic [2, 3]. 
There is a pronounced scarcity of normalcy studies that may 
provide standardization on networks types, network number, 
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intra- and inter-subject variability of the ICA-resolved 
networks in adults. The situation is worse with respect the 
pediatric population.  
The lack of standardization of rs-FMRI findings processed 
with ICA, presents a further burden. In contrast to the 
regular MRI or an X-ray, in which the settings of standard 
performance are well known and concerted by the radiology 
practitioners, the FMRI sequences, in general, do not have a 
technique to which a majority of scholars or recognized 
authors agree on. Less on rs-FMRI. Things as basic as the 
number of time points, that is, the length of the study 
depends highly on the preference of the clinical or research 
group. Many other variables may differ. However, it seems 
important to remark at this moment that the number of 
network-yield of the ICA method mostly rely on the number 
of time points. Too few time points and the networks may 
appear collapsed as the algorithm falls short of data to 
differentiate neighboring oscillation profiles; too many time 
points and normal networks involving in synchrony both 
hemispheres may dissociate into two or more components. 
These errors are called underfitting and overfitting, 
respectively [4]. In the preprocess of the ICA technique, the 
user may predefine how many components to search for. 
This is type of threshold that has to be selected cautiously as 
it may also produce the same underfitting and overfitting 
errors.  
Another important consideration to take into account is a 
subdivision of the resting-state neural networks based on 
“stability.” Neural networks are in general quite stable 
across subjects, sessions and even subject cognitive status. 
There is, however, more stability across subjects with 
respect control systems (salient, executive and default mode 
networks) than processing networks (multimodal-areas). For 
a review on this topic, the reader is remitted to the work of 
Gratton C, et al, (2018) [5]. In our experience, intrasubject, 
trans-session network stability is best seen for networks 
representing unimodal functional areas (primary visual, 
foveal visual area, primary auditory, primary somatosensory 
and primary motor areas). The default mode and executive 
(fronto-parietal) networks follow. These networks may be 
termed “stable networks”. In addition, networks that have 
been previously described on normal subjects and are felt to 
have some commonality in group studies are called 
canonical. A term denoting prudence for not to brand them 
directly as “normal’. In contrast, non-canonical networks 
lack of those features, and are probably related to structural 
or functional abnormal conditions. 
However, much of these characterizations have been 
established in normal adults, but there is scarcity of work to 
characterize the frequency and distribution of the main rs-
FMRI neural networks in the children population. 
The AIM of this paper is to describe the presence, yield-
frequency, distribution, inter-network associations and 
oscillatory frequency of the rs-FMRI networks in a 
population of normal children, utilizing ICA. 
 
Methods 
Subjects. 40 rs-FMRI data sets were utilized from the 
normative data of the project “ADHD200”, a repository 
publicly available at 
http://fcon_1000.projects.nitrc.org/indi/adhd200. From all 
the candidates available, the selection criteria include: age 

18 or below; right handedness; minimum Verbal IQ of 85; 
minimum Full-Scale IQ of 80; and absence of neurological 
conditions. Each dataset was visually inspected by one of 
the authors, who is a senior neuroscientist with more than 20 
years of experience in fMRI in children. Any case with 
overt head motion was discarded. The final dataset was 
comprised of 19 male and 21 female subjects, from 7 to 18 
years of age, mean/SD: 11/2.64. The study was approved by 
the Western IRB. 
 
MRI sequence: the rs-FMRI sequences were obtained 
utilizing an echo-planar sequence sensitive to the BOLD 
effect with the following parameters: 180 time points (scan 
time 6:00 min), TR: 2000 ms, TE: 15 ms, 1 average, flip 
angle: 90, standard shim mode; voxel size 3.0 x 3.0 x 4.0 
mm, 33 axial interleaved slices with no gap, FOV 240 mm, 
slice thickness 4.0 mm.  
 
Pre/post-processing: each subject’s FMRI was visually 
inspected in a dynamic presentation utilizing the Mango 
Tool (http://ric.uthscsa.edu/mango/). Patients exhibiting 
overt motion were discarded. Preprocessing was performed 
utilizing MELODIC (Multivariate Exploratory Linear 
Optimized Decomposition into Independent Components) a 
module of the Functional MRI Brain Software Library 
(FSL) version 3.0, public-available at 
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC. Each study 
was run separately as we were more interested in variability 
than commonality. Therefore spatial normalization was not 
necessary. Each dataset was motion-corrected, spatially 
smoothed with a FWHM of 5 mm, and filtered with a high 
pass filter (all tools available on MELODIC). Automatic 
dimensionality estimation was chosen to threshold the 
number of network yield. This estimation balance under-
fitting and over fitting, and usually is set at 20% of the 
number of time points. The maps of Independent 
Components are presented by MELODICA in a webpage 
report. Clusters are color coded and superimposed in a 
template from the mean of all time points of the echoplanar 
sequence. High to low intensities appear in a spectrum 
between yellow and red colors. Negative correlated signals 
are presented in blue color. 
 
Network classification: In the next step the neural 
networks were selected and classified. The task was 
accomplished by the author who has an experience with rs-
FMRI in children of 10+ years and more than 500 clinical 
and normal cases. For this purpose, the following algorithm 
was utilized: To discard: noise-related components; CSF 
pulsation components; vascular pulsation components; 
motion (body and eyes) component. This procedure was 
based on component localization of maxima, cluster 
morphology, frequency of oscillation and profile of 
oscillation (See Figure 1). From the pool of remnant 
components the following 3 criteria were required for a 
component to be classified as a Neural Network: 
a. Cortical (mainly) localization 
b. Shape and contours segmenting a canonical functional 

area 
c. 3D-gaussian distribution of intensities  
d. Oscillation profile (Figure 2) 
e. Frequency of oscillation between 0.01 and 0.1 Hz 
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Fig 1: Non-neural network Independent Components Types. 
 

Examples of oscillation profiles and typical image of 5 types 
of non-neural conforming components. Head motion profile 
is identified for its sharp low frequency-high amplitud 
power change. The most typical aspect is the observed 
double horse-shoe shaped positive/negative intensities in 
extra-axial antipodic localization. CSF Flow profile consist 
of rhytmic high frequency oscillations with the maxima of 
the component located extra-axially in the cysterns, 
ventricles and convexital spaces. Vascular pulsations have a 
profile of sharp waves at frequencies way above 0.1 Hz. The 
typical component maxima is located extra-axially at the 
level of great sinuses of arteries. In the example, the torcula 
component is presented. Magnetic susceptibility may appear 
in the profile as a mixture of slow and high frequencies. The 
localization however is more evident. In the example the 

component is segmenting the transition between the low 
intensities below the anterior fossa (paranasal sinuses and 
orbit) and the brain. Artifacts are easy to identify, as they do 
not present any pattern of oscillation. They show up as sharp 
high amplitude signal changes. The pattern of “activation” is 
unusually large and its shape not conforming with any 
known functional or anatomical segmentation. 
3D-Gaussian distribution of intensities means that a true 
cluster should exhibit the highest intensities in a core and 
lower values in the periphery. A cluster is judged as noise 
by the presence of large or irregular clusters that do not 
match any functional or anatomical brain segmentation. 
Noise, in general may be due to random artifacts due to 
software/hardware temporal glitches, or magnetic 
susceptibility. The latter is identified as gross clusters 
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located in or around of areas of sharp transition between 
quite distinct intensities. They are frequently seen around 
the petrous bone or the anterior cranial fossa. CSF pulsation 
may be detected by its clear extra-axial localization. The 
frequency is higher than 0.1 HZ. However, this factor may 
vary as the CSF passages vary in size with subsequent 
changes in its frequency. CSF components may be seen in 
the ventricles, prepontine cystern, peri-chiasmatic cystern, 
in the sylvian fissures (when they are open) and in the 

hemispheric convexities. Vascular-pulsation and 
balistocardiogram components may be distinguished by 
their localization in midline (superior and inferior sagital 
sinus; torcula), cranial base (cavernous sinus and carotid 
arteries); and postero-lateral in the posterior fossa 
(transveral and sigmod sinus). Their frequency is usually 
distinctive but is not rare to find them within the 
spontaneous. 

 

 
 

Fig 2: Typical oscillation pattern (profile) of a neural network. In the plot, the X axis represents (partially) the time (in seconds), and the Y 
axis represents an arbitrary signal intensity scale. Notice the double modulation of high frequency (small spikes) and the involving very low 

frequency characteristic of the spontaneous brain oscillations. 
 

Brain oscillations range. Body (head) motion may be 
detected by the characteristic horseshoe-shaped artifacts it 
produces. Intensities are seen high in one side and low in the 
oposite. Eyes movement are easy to detect due to the 
localization of the clusters. Motion components may show 
frequencies within the spontaneous brain oscillations range 
but they lack the typical oscillation profile. 
Clusters were named by its localization, shape and 
localization of maxima. The following categories were 
utilized for neural-networks classification (Table 1): 

Primary area- networks (unimodal): visual, auditory, 
somatosensory, motor. They are bilaterally present, more or 
less symmetrical. Primary visual may be represented in two 
different components: polar visual and mesial occipital. 
Sensory and motor components may also be subdivided 
between mesial, dorsal and lateral components. 
Secondary area- networks (multimodal): visual down 
stream, visual upstream, precuneus, inferior parietal lobule, 
intraparietal, prefrontal, BA40 (secondary somatosensorial 
area); BA39. 

 
Table 1: ICA neural networks in a population of normal children. Conventions: Cog/cont: cognitive or control type; Sym: Symmetric in # of 

subjects; UL: present only in one side; FOS: Frequency of Oscillation 
 

Network 
Name/Type Example Present 

in (%) 
Sym 
(%) 

FOS 
(Mean/SD) Main Characteristics and Variants 

Amygdala 
(Cog/cont) 

 

10 75% 
(UL: 0%) 0.026/0.016 Usually encompassing activation of 

rostro-basal striatum 

Auditory 
(Primary) 

 

50 75% 
(UL: 0%) 0.0168/0.0072 May conjoin with sensory or posterior 

parietal networks 

BA 19/39 
(Secondary) 

 

52.5 52.4 
UL: 10% 0.02/0.013 

May conjoin with fronto-temporal or 
fronto-parietal areas. Is part of the default 

mode. 

Basal Ganglia 
(Cog/cont) 

 

17.5 85.7 
UL: 0% 0.022/0.01 May be seen conjoined with the 

amygdala 
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Cerebellum 
(cont) 

 

15 50 
UL: 0% 0.052/0.075 Notice the subcortical activation of the 

nuclei. 

CG (middle) 
(Default mode) 

 

12.5 100 
UL: 0% 0.025/0.017 May appear merged with posterior or 

anterior default mode traits 

CG (posterior) 
(Default mode) 

 

57.5 95.7 
UL: 0% 0.025/0.028 

Connecting to areas of the ADM (as 
shown in the picture) or convexital 

subcomponents of PDM. 

Default mode 
(anterior) 

(Default mode) 
 

57.5 95.7 
UL: 0 0.027/0.025 Usually conjoined with PDM clusters (as 

shown in the picture). 

Default mode 
(Posterior) 

(Default mode) 

 

75 76 
UL: 0 0.02/0.0094 

May appear partially represented with the 
rest of the modules in other component. 

May also appear conjoined with the 
ADM 

Executive (left) 
(Cog/cont) 

 

70 
 0 0.023/0.009 

Also know as the fronto-parietal network. 
Clusters may peak at parietal or frontal 

areas. 

Executive 
(Right) 

(Cog/cont) 

 

97.5 0 0.024/0.015 The most stable and frequently present 
network in this sample 

Hippocampus 
(Cog/cont) 

 

7.5 100 
UL:0 0.014/0.002 May involve the amygdala as well. 

Intraparietal 
(Cog/cont) 

 

70 78.6 
UL: 0.5% 0.03/0.033 May appear connecting to motor and pre-

motor areas (as shown in the image) 

Language 
(Cog/cont) 

 

57.5 0 0.021/0,01 

Identification may be problematic, 
particularly if showing in the right 

hemisphere. Nodes in Wernicke's and 
Broca's putative areas are necessary for 

categorization (as shown here). 
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Mesial Frontal 
(Default mode) 

 

55.5 91 
UL: 0% 0.02/0.01 Connectivity with ACG amy be 

observed. 

Motor 
(Primary) 

 

40 100 
UL: 0 0.024/0.01 

The motor network usually appears in 
two different components: lateral (face 
and tongue) and high convexital for the 

hand. 

Somatosensory 
(Primary) 

 

75 86.7 
UL: 0 0., 022/0.01 

May appear conjoined with either motor, 
pre-motor networks or with auditory 

networks. 

Paracentral 
(Primary) 

 

50 100 
UL: 0% 0.02/0.01 

This network corresponds to a 
segmentation of the somatosensory 

network that represents the feet and the 
trunk. 

Precuneous 
(Default mode) 

 

82 87.9 
UL: 0% 0.02/0.01 May be merged with other posterior 

neural networks (PDM, PCG). 

Salience 
(Cog/cont) 

 

60 79 
UL: 0 0.02/0.011 The network connects the anterior insula, 

the frontal opercula and the ACG. 

Visual Primary 
(Primary) 

 

77.5 90.3 
UL:0 0.0252/0.0113 May appear conjoined with visual 

secondary areas 

Visual Polar 
(Primary) 

 

42.5 100 0.02/0.01 May merge with visual down-stream 
network 

Visual Down-
Stream 

(Secondary) 

 

62.5 92 
UL:0 0.024 / 0.017 May marge with visual polar and up-

stream 

Visual Up-
stream 

(Secondary) 

 

37.5 86.75 
UL: 0 0.024/0.088 May marge with visual polar and visual 

down-stream or precuneus. 

 
Cognitive and control networks: language, opercular, 
prefrontal, executive frontoparietal network, salience 
network. 
 

Default mode: anterior default mode (ADM) and Posterior 
default mode (PDM). 
Based on the reports in adults and the experience of the 
author, the following priors were taken into account. All 
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networks but three are more or less symmetrical. The 
fronto-parietal executive networks (right and left) are 
usually singled out independently. The language network 
appears also asymmetrically. The default mode involves 
areas of the posterior and anterior cingulate gyrus (PCG, 
ACG), BA39 and prefrontal lateral cortices. It is a common 
finding to have them split into its anterior and posterior 
parts. The salience network involves the insula, fronto-
opercular areas, prefrontal lateral and the ACG. Networks 
appearing less frequently (less stable) in the normal 
population (at least in adults) are: the mesial frontal, the 
frontopolar and the amygdala/hippocampal networks; 
several iterations of the cingulate gyrus anterior, middle and 
posterior (appearing separatedly). In some subjects the basal 
ganglia and the cerebellar nuclei show characteristics of 
spontaneous low-frequency oscillations.  
Per each network and across the subjects we computed: (1) 
the percentage of frequency (within the entire population); 
(2) the percentage of symmetrical appearance (contrasted to 
unilateral appearance); (3) the range and mean of the 
oscillation frequency and (4) the most relevant norm-
deviation in terms of conjuction with other networks or 
involvement of distal areas. 
 
Results 
All patient-data yielded between 32 and 44 independent 
components (IC). In average, the component exhibiting the 
maxima variability was the CSF explaining and average of 
6.95% of variability. The range of neural network yield was 
between 11 and 26. Six networks were judged as Primary 
functions; 3 were Secondary functions; 9 of cognition or 
control and 6 of the default mode system. The oscillatory 
frequency mean/SD were 0.0168/0.072 Hz. Main variants 
consist in several patterns of network-merging (See Table 
1). Usually, in cases of merging, one of the networks was of 
the unimodal type (e.g., somatosensory, visual, auditory). In 
some few cases there were iterations of the same network at 
different frequencies. The auditory and hippocampus 
networks showed the slowest frequency of oscillation (Mean 
0.016 and 0.014 SD: 0.008 and 0.002, respectively); while 
the intraparietal network showed the highest frequency 
(Mean 0.03) and SD (0.033). The networks more frequently 
found across the subjects were the right executive network 
(97.5%), followed by the precuneus (82%) and visual 
(77.5%). The networks less frequently found were the 
hippocampus (7.5%) and the amygdala (10%).  
Findings by Network. Table 1 summarized the main 
findings in all the 24 networks found in our sample. 
 
Discussion 
We have characterized the neural networks in a population 
of pediatric normal subjects utilizing a method of ICA on a 
rs-FMRI study. 24 different networks were found. The 
frequency of appearance and their symmetry have been 
assessed. We also describe the main variations on each of 
these networks. 
To our knowledge this is the first time a description of the 
neural networks is accomplished in a population of pediatric 
normal subjects with characterization of their localization, 
oscillation frequency and assessment of their yield 
frequency (percentage of subjects exhibiting the network). 
There is scant data on the standardization of neural networks 
in normal pediatric subjects. A PubMed search (accessed 
10/14/2021) utilizing the following string (((rs-fmri 

[Title/Abstract]) AND (children[Title/Abstract])) NOT 
(patient[Title/Abstract]): yield 103 hits. However only 10 
articles were based on normal subjects; the rest describe 
clinical cases, encompassing mostly epilepsy, ADHD, 
Autism, and psychiatric disorders. After reviewing the 
details of the 10 articles on “normal children” only 3 articles 
deal with normality on rs-FMRI in children. (The rest deal 
with different techniques including graph theory and ROI-
based functional connectivity or connectivity related to 
specific cognitive functions, e.g., numerosity or emotion 
regulation). None of these 3 studies grapple with the 
characterization of normal networks in children: (1) 
Thomason M, et al [6]; studied the test-retest reliability of the 
rs-FMRI findings processed with the ICA in 65 children. 
They made comparisons across spatial, temporal and 
frequency domains, utilizing six cognitive and sensorimotor 
networks and sought for differences both within and 
between scan sessions. They found that “measures from 
resting-state data in children were consistent across multiple 
domains (spatial, temporal, and frequency)”. Their 
conclusion is that Resting-state connectivity is a reliable 
method for assessing large-scale brain networks in children. 
They do not sought for a description of the total yield of 
ICA or the characterization in terms of frequency of group-
yield of oscillatory frequency of each component; (2) 
Thornburgh, Cl, et al [7] compared adult vs children’s 
correspondence of resting-state networks based on spatial 
overlap. They concluded that all the major networks 
described in adults and older children may be also found in 
young children (ages 6 and 7 years). Interestingly, this 
group describe a total yield of 20 networks, close to our 
number. However, they utilized a group-ICA method that 
may discard some few networks not passing the threshold 
for commonality; and (3) White T, et al. [8] aimed to find the 
time of acquisition length for the networks to come stable in 
a group of 84 six-to-eight year-old children,. They did not 
aim to standardize the rs-FMRI yield or characterize the 
networks in any way. They found that eight networks, 
including the default mode, salience, frontal, left 
frontoparietal, right frontoparietal, sensorimotor, auditory, 
and visual networks, all stabilized after ∼5½ m. Of note is 
that the sequence length utilized in our study was of 6 
minutes, supporting the soundness of the technique. 
Our study may have some shortcomings. The yield of some 
networks seem lower than expected. The selected data is 
part of a control group of the ADHD project. We have 
chosen carefully the subjects whose rs-FMRI settings are 
more similar to those we use in clinical cases. We have 
experience on patients with several clinical conditions 
including epilepsy, brain trauma, ADHD and psychosis. In 
our experience, the visual and PDM networks are present in 
more than 90% of awake cases, a significant higher yield 
than what we found and report here. We do not have 
information about the specific demands during the rs-FMR 
session of the cases we selected. Usually we request our 
patients to focus their attention in their breath. We ask them 
they keep their eyes open, as well. We feel these two 
conditions should not explain the relative low yield of the 
two networks in the sample.  
We have intentionally chosen not to performer a group-ICA. 
This procedure is relevant to find commonalities but fail to 
show normal variants. It is well known that some rs-
networks are unstable and dependable under specific 
conditions of the mental status of the subject. Commonality 
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may be of interest to contrast groups and make inferences 
on statistically significant deviations that make serve as 
biomarkers of pathology. Instead, in clinical praxis, the 
practitioner should be aware of all normal variations to be 
able to focus in those outliers prompting for explanation and 
that could be related to functional deviant activity of the 
brain. Take for example, epilepsy. It has been recently 
described how non-canonical networks (those non-
conforming with established patterns in normal subjects) are 
related with epilepsy onset areas in intractable epilepsy in 
children [9]. We have also rely on an expert opinion in the 
selection and categorization of networks as the normal 
praxis of neuroradiology is usually based in such approach. 
Automatic pattern selection is in its infancy and difficult to 
implement in clinical settings. 
Our finding provide an easy approach for rs-network 
classification from studies performed with ICA. ICA is the 
easiest way to perform functional connectivity as it is not 
hypothesis driven and is less intensive in pre and post-
processing. We also provide for the first time a complete 
survey on neural network classification in children 
normative data. Non-canonical networks may be explained 
as brain reorganization, lack of synchrony, partial 
involvement of a network, or lack of activation due to 
pathology or functional disturbances. In patients with 
developmental delay, intractable epilepsy and brain lesions 
it is common to find hemispheric dissociation of networks 
(each side’s component appearing appart); lack of 
counterpart (bilateral networks showing unilaterally); or 
lack of activation. Our work is a contribution to the field as 
no other studies have explored the normal neural networks 
in the way we have demonstrated in this paper. 
 
Conclusions 
We have demonstrated 24 neural canonical networks in a 
sample of 40 normal children who performed a rs-FMRI, 
utilizing ICA. These canonical networks have certain 
specific characteristic and may not necessarily appear in 
each instance of exploration. This study provides a 
departure point for detection of non-canonical networks that 
may prompt brain dysfunction or structural pathology. 
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