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Abstract 

Aim: Role of trace elements (TE) in etiology and pathogenesis of Riedel’s disease (RD) is unclear. The aim of this exploratory 

study was to assess whether there were significant changes in thyroid tissue levels of five TE (Br, Fe Rb, Sr, and Zn) are 

present in the fibrotic transformed thyroid. 

Methods: Five TE of thyroid tissue were determined in 6 patients with RD and 105 healthy populations. The measurements 

were performed using energy-dispersive X-ray fluorescent analysis.  

Results: Elevated mean values of Br and Rb content were found in thyroid with RD in comparison with normal level (in 6.4 

and 1.8 times, respectively).  

Conclusions: There are considerable changes in some TE contents in tissue of thyroid with RD. Thus, it is reasonable to 

assume that the levels of these TE in thyroid tissue can be used as RD markers. However, this topic needs additional studies. 
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Introduction 

Riedel’s struma, also called Riedel’s disease and Riedel’s 

thyroiditis. is a peculiarly hard, infiltrative lesion (nodule) 

of the thyroid gland [1]. Riedel's disease (RD) is a rare form 

of chronic thyroiditis of unknown etiology associated with 

global or partial fibrosis of the thyroid gland, destruction of 

the thyroid follicle architecture, obliterative phlebitis, and a 

mixed infiltrate of lymphocytes, eosinophils, and plasma 

cells [1, 2]. Clinical differentiation between RD, Hashimoto's 

disease, and other thyroid benign and malignant nodules is 

often difficult [2, 3]. We hypothesized that disbalance of trace 

elements (TE) contents in thyroid tissue may play a 

significant role in etiology and pathogenesis of RD. 

Furthermore, specific levels of TE contents in fibrotic 

transformed thyroid tissue may be used as RD biomarkers. 

For over 20th century, there was the dominant opinion that 

all thyroid nodules (TN), including RD, are the elementary 

consequence of iodine (I) deficiency. However, TN have 

been found to be a frequent disease even in those countries 

and regions where the population is never exposed to I 

deficiency [4]. Moreover, it was shown that iodine excess has 

severe effects on human health and associated with the 

development of thyroidal disfunctions and autoimmunity, 

nodular and diffuse goiter, benign and malignant tumors of 

gland [5-8]. It was also demonstrated that besides the iodine 

deficiency and excess many other dietary, environmental, 

and occupational factors are associated with the TN 

incidence [9-11]. Among them a disturbance of evolutionary 

stable input of many chemical elements in human body after 

industrial revolution plays a significant role in etiology of 

thyroidal disorders [12]. In addition to I, many other TE are 

involved in essential physiological functions [13]. Essential 

or toxic (goitrogenic, mutagenic, carcinogenic) properties of 

TE depend on tissue-specific need or tolerance, respectively 
[13]. Deficiency, overload or an imbalance of the TE may 

result in cellular dysfunction, degeneration, death, benign or 

malignant transformation [13-15].    

In our previous studies the complex of in vivo and in vitro 

nuclear analytical and related methods was developed and 

employed for the investigation of I and other TE levels in 

the normal and pathological thyroid gland [16-22]. Level of I 

in the normal gland was studied in relation to age, gender 

and some non-thyroidal diseases [23, 24]. After that, variations 

of many other TE content with age in the thyroid of males 

and females were investigated and age- and gender-

dependence of some TE was observed [25-41]. Furthermore, a 

significant difference between some TE mass fractions in 

normal and malignant thyroid was demonstrated [42-47].  

So far, the etiology and pathogenesis of RD has to be 

considered as multifactorial. The present study was 

performed to clarify the role of some TE in the RD etiology. 

With this in mind, our aim was to assess the bromine (Br), 

iron (Fe), rubidium (Rb), strontium (Sr), and zinc (Zn) 

contents in normal thyroid tissue (NT) and RD tissue using 

non-destructive energy dispersive X-ray fluorescent analysis 

with 109Cd radionuclide application for X-ray fluorescence 

excitation (109Cd EDXRF). A further aim was to compare 

the levels of these TE in the NT and RD groups of samples.  

All studies were approved by the Ethical Committees of the 

Medical Radiological Research Centre (MRRC), Obninsk. 

All the procedures performed in studies involving human 

participants were in accordance with the ethical standards of 

the institutional and/or national research committee and with 

the 1964 Helsinki declaration and its later amendments, or 

with comparable ethical standards. 

 

Material and Methods 

All patients with RD (n=6, 5 females and 1 male, mean age 

MSD was 399 years, range 34-50) were hospitalized in 

the Head and Neck Department of the MRRC. Thick-needle 

puncture biopsy of suspicious lesion of the gland was 

performed for every persons, to allow morphological 

examination of affected thyroid tissue and to determine their 

TE contents. For all patients the diagnosis has been 

confirmed by clinical and morphological results obtained 

during studies of biopsy and resected materials. Histological 
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conclusion for all thyroidal lesions was the RD. 

Normal thyroid samples were removed at necropsy from 

105 deceased (mean age 4421 years, range 2-87), who had 

died suddenly. The majority of deaths were due to trauma. 

Histological examination was used in the NT group to 

match the age criteria, as well as to confirm the absence of 

micro-nodules and underlying cancer.  All thyroid samples 

were divided into two parts using a titanium scalpel [48]. One 

was used for morphological study while the other was for 

TE evaluation. All samples for TE analysis were weighed, 

freeze-dried and homogenized [49]. The pounded sample 

with mass about 8 mg was applied to the piece of Scotch 

tape serving as an adhesive fixing backing. To determine the 

contents of the TE by comparison with known data for 

standard, aliquots of commercial, chemically pure 

compounds and synthetic reference materials were used [50]. 

Certified Reference Material of the International Atomic 

Energy Agency CRM IAEA H-4 (animal muscle) were 

analyzed to estimate the precision and accuracy of results. 

The CRM IAEA H-4 subsamples were prepared in the same 

way as the samples of thyroid tissue.  Details of the relevant 

facility for 109Cd EDXRF, source with 109Cd radionuclide 

for X-ray fluorescence excitation, methods of analysis and 

the quality control of results were presented in our earlier 

publications concerning the 109Cd EDXRF analysis of 

human thyroid and prostate tissue [25, 26, 51].  

All thyroid samples were prepared in duplicate, and mean 

values of TE contents were used in final calculation. Using 

Microsoft Office Excel software, a summary of the 

statistics, including, arithmetic mean, standard deviation, 

standard error of mean, minimum and maximum values, 

median, percentiles with 0.025 and 0.975 levels was 

calculated for TE contents in NT and RD groups of tissue 

samples.  The difference in the results between two groups 

(NT and RD) was evaluated by the parametric Student’s t-

test and non-parametric Wilcoxon-Mann-Whitney U-test. 

 

Results 

Table 1 presents certain statistical parameters of the Br, Fe, 

Rb, Sr, Zn mass fraction in normal thyroid and Riedel’s 

struma. Comparison of values obtained for Br, Fe, Rb, Sr, 

and Zn contents in the NT samples with median of means 

reported by other researches [52-58] depicts in Table 2. 

The ratios of means and the difference between mean values 

of Br, Fe, Rb, Sr, Zn mass fractions in normal thyroid and 

Riedel’s struma are presented in Table 3. 

 
Table 1: Some statistical parameters of Br, Fe, Rb, Sr, and Zn mass fraction (mg/kg, dry mass basis) in normal thyroid and Riedel’s struma 

 

Tissue Element Mean SD SEM Min Max Median P 0.025 P 0.975 

Normal Br 13.9 12.0 1.3 1.4 54.4 10.0 2.23 50.8 

thyroid Fe 222 102 11 47.1 512 204 65.7 458 

n=105 Rb 9.03 6.17 0.66 1.80 42.9 7.81 2.48 25.5 

 Sr 4.55 3.22 0.37 0.10 13.7 3.70 0.48 12.3 

 Zn 112 44.0 4.7 6.10 221 106 35.5 188 

Riedel’s struma Br 88.5 39.0 19.5 38.0 123 96.5 41 122 

n=6 Fe 288 187 93 123 509 259 125 499 

 Rb 16.1 4.8 2.4 9.4 20.3 17.4 9.90 20.2 

 Sr 10.4 10.6 5.3 1.09 23.2 8.57 1.18 22.6 

 Zn 78.5 28.8 14.4 58.0 121 67.5 58.5 117 

M – arithmetic mean, SD – standard deviation, SEM – standard error of mean, Min – minimum value, Max – 

maximum value, P 0.025 – percentile with 0.025 level, P 0.975 – percentile with 0.975 level. 

 
Table 2: Median, minimum and maximum value of means Br, Fe, Rb, Sr, and Zn contents in normal thyroid according to data from the 

literature in comparison with our results (mg/kg, dry mass basis) 
 

Tissue Element 
Published data [Reference] This work 

Median of means (n)* Minimum of means M or M±SD, (n)** Maximum of means M or M±SD, (n)** M±SD 

Normal Br 18.1 (11) 5.12 (44) [52] 28444 (14) [53] 13.9±12.0 

thyroid Fe 252 (21) 56 (120)  [54] 2444700 (14) [53] 222±102 

 Rb 12.3 (9) ≤0.85 (29) [55] 294191 (14) [53] 9.03±6.17 

 Sr 0.61 (9) 0.055 (83) [56] 46.84.8 (4) [57] 4.55±3.22 

 Zn 118 (55) 1.08 (120) [58] 820204 (14) [53] 112±44 

M –arithmetic mean, SD – standard deviation, (n)* – number of all references, (n)** – number of samples. 
 
Table 3: Differences between mean values (MSEM) of Br, Fe, Rb, Sr, and Zn mass fraction (mg/kg, dry mass basis) in normal thyroid and 

Riedel’s struma 
 

Element 
Thyroid tissue  Ratio 

Normal thyroid n=105 Ridel’s struma n=6 Student’s t-test p U-test p Ridel’s struma to Normal thyroid 

Br 13.9±1.3 88.5±19.5 0.031 ≤0.01 6.37 

Fe 222±11 288±93 0.533 >0.05 1.30 

Rb 9.03±0.66 16.1±2.4 0.054 ≤0.05 1.78 

Sr 4.55±0.37 10.4±5.3 0.353 >0.05 2.29 

Zn 112±5 78.5±14.4 0.095 >0.05 0.70 

M–arithmetic mean, SEM – standard error of mean, Statistically significant values are in bold 

http://www.radiologyjournals.com/


International Journal of Radiology Sciences   www.radiologyjournals.com 

32 

Discussion 

As was shown before [25, 26, 51] good agreement of the Br, Fe, 

Rb, Sr, and Zn contents analyzed by EDXRF with the 

certified data of CRM IAEA H-4 indicates acceptable 

accuracy of the results obtained in the study of TE of the 

thyroid samples presented in Tables 1-3. 

The mean values and all selected statistical parameters were 

calculated for five TE (Br, Fe, Rb, Sr, and Zn) mass 

fractions (Table 1). The mass fraction of Br, Fe, Rb, Sr, and 

Zn were measured in all, or a major portion of NT and RD 

tissue samples.  

In a general sense values obtained for Br, Fe, Rb, Sr, and Zn 

contents in the NT samples (Table 2) agree well with 

median of mean values reported by other researches [52-58]. A 

number of values for TE mass fractions in literature were 

not expressed on a dry mass basis. However, we calculated 

these values using published data for water (75%) [59] and 

ash (4.16% on dry mass basis) [60] contents in thyroid of 

adults.  

Data cited in Table 2 for NT also includes samples obtained 

from patients who died from different non-endocrine 

diseases. In our previous study it was shown that some non-

endocrine diseases can effect on TE contents in thyroid [24]. 

Moreover, in many studies the “normal” thyroid means a 

visually non-affected tissue adjacent to benign or malignant 

thyroidal nodules. However, there are no data on a 

comparison between the TE contents in such kind of 

samples and those in thyroid of healthy persons, which 

permits to confirm their identity. 

The data on TE levels in RD tissue were not found in the 

literature. 

The range of means of Br, Fe, Rb, Sr, and Zn level reported 

in the literature for NT tissue vary widely (Table 2). This 

can be explained by a dependence of TE content on many 

factors, including “normality” of thyroid samples (see 

above),  the region of the thyroid, from which the sample 

was taken, age, gender, ethnicity, mass of the gland, and its 

functional activity. Not all these factors were strictly 

controlled in cited studies. However, in our opinion, the 

main reason for the inter-observer discrepancy can be 

attributed to the accuracy of the analytical techniques, 

sample preparation methods, and the inability to take 

standardized samples from affected tissues. It was 

insufficient quality control of results in these studies. In 

many scientific reports, tissue samples were ashed or dried 

at high temperature for many hours. In other cases, thyroid 

samples were treated with solvents (distilled water, ethanol, 

formalin etc). There is evidence that during ashing, drying 

and digestion at high temperature some quantities of certain 

TE are lost as a result of this treatment. That concerns not 

only such volatile halogen as Br, but also other TE 

investigated in the study [61, 62]. 

From Table 3, it is observed that in RD samples the mass 

fraction of Br and Rb are approximately 6.4 and 1.8 times, 

respectively, higher than in NT. Thus, if we accept the TE 

contents in the NT group as a norm, we have to conclude 

that with a fibrotic transformation the Br and Rb level in 

thyroid tissue significantly changed.  

Characteristically, elevated or reduced levels of TE 

observed in affected tissues are discussed in terms of their 

potential role in the initiation and promotion of TN. In other 

words, using the low or high levels of the TE in TN 

researchers try to determine the role of the deficiency or 

excess of each TE in the TN etiology. In our opinion, 

abnormal levels of many TE in TN, including RD, could be 

and cause, and also effect of thyroid tissue transformation. 

From the results of such kind studies, it is not always 

possible to decide whether the measured decrease or 

increase in TE level in pathologically altered tissue is the 

reason for alterations or vice versa. Nevertheless the 

differences between TE levels in normal and affected 

thyroid tissue could be used as RD markers. 

This study has several limitations. Firstly, analytical 

techniques employed in this study measure only five TE 

(Br, Fe, Rb, Sr, and Zn) mass fractions. Future studies 

should be directed toward using other analytical methods 

which will extend the list of TE investigated in NT and RD. 

Secondly, the sample size of RD group was relatively small 

and prevented investigations of TE contents in RD group 

using differentials like gender, thyroid functional activity, 

stage of disease, dietary habits of healthy persons and 

patients with RD. Lastly, generalization of our results may 

be limited to Russian population. Despite these limitations, 

this study provides evidence on fibrotic-specific tissue Br 

and Rb level alteration and shows the necessity to continue 

TE research of RD. 

 

Conclusion 

In this work, TE measurements in tissue samples from NT 

and RD were performed using 109Cd EDXRF. It was shown 

that 109Cd EDXRF is an adequate analytical tool for the non-

destructive determination of Br, Fe, Rb, Sr, and Zn content 

in tissue samples from healthy and affected human thyroid, 

including needle biopsy samples. It was observed that in RD 

contents of Br and Rb were significantly higher than in 

normal tissues. In our opinion, the presented study data 

strongly suggest that TE plays an important role in thyroid 

health, as well as in the etiology and pathogenesis of RD. It 

was assumed that the differences in TE levels in affected 

thyroid tissue could be used as RD markers. 
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